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Abstract. In this paper, exponential anti-synchronization in mean square of an uncertain memristor-based
neural network is studied. The uncertain terms include non-modeled dynamics with boundary and stochas-
tic perturbations. Based on the differential inclusions theory, linear matrix inequalities, Gronwall’s inequal-
ity and adaptive control technique, an adaptive controller with update laws is developed to realize the ex-
ponential anti-synchronization. Adaptive controller can adjust itself behavior to get the best performance,
according to the environment is changing or the environment has changed, which has the ability to adapt
to environmental change. Furthermore, a numerical example is provided to validate the effectiveness of the
proposed method.

1 Introduction

Memristor has received a great deal of attention because of
its rich capabilities, especially in the aspect of store and
access data [1] with the memory mode of human brain
which is realized by adjusting the strength of synaptic
connections between neurals [2]. The synapse is a cru-
cial element in biological neural networks, and which is
the bridge across which nerve cells (neurons) contact each
other. Artificial neural network try to imitate the working
mechanisms of their biological counterparts though the
learning in the same way, and over the years the mem-
ristor has been considered to be the electronic equivalent
of the synapse [3], we use the memristor to simulate the
memory and learning function of synapse. Therefore, it is
very interesting to investigate the memristor-based neural
networks (MNN), in which the resistance of a memristive
system depends on its past states and exactly this func-
tionality can be used to mimic the synaptic connections in
a (human) brain [4], and provide an in-depth understand-
ing of key design implications of memristor-based memo-
ries, is a model more realistic for the description of real
neural systems [5,6]. Additionally, memristor which works
as synaptic weights demonstrates plentiful characteristics
to some extent [7]. And its potential applications are in
next generation computers and powerful brain-like neural
computers.

a e-mail: li_lixiang2006@163.com

Meanwhile, as an important dynamic behaviour of
nonlinear system [8,9], the stability and the synchroniza-
tion of system, for their potential applications play an
important role in many different fields, including image
process, secure communication, information science, bi-
ological system, etc. Subsequently, the stability and the
synchronization of memristor-based neural networks have
been widely investigated (see Ref. [10]), including expo-
nential synchronization [11–13], complete periodic syn-
chronization [14], anti-synchronization [15,16] and so on.
It is a common phenomenon that the synchronization of
two state vectors have the same state trajectory but oppo-
site signs control have important application significance,
including anti-synchronization to lasers, which provides
a new way to generate the special form of pulse, and
anti-synchronization to communication systems, which en-
hances security and secrecy of communication by changing
the form of synchronization and anti-synchronization in
the process of digital signal transmission. Recently, the
anti-synchronization control has been more widely ap-
plied to many fields, e.g., image processing, secure com-
munication, information science, and harmonic oscillation
generation. Moreover, the anti-synchronization analysis
for memristive neural networks can obtain some amazing
properties, richness of flexibility, and opportunities.

In the applications, there are typically some uncer-
tain parameters and noise perturbations in real systems,
which often affect their dynamics, so it has practical
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implications to investigate synchronization issues of un-
certain complex dynamical networks by using a pinning
control strategy [17] and adaptive control [18–20]. To
our best knowledge, the memristor-based neural networks
models proposed and studied in the literature are deter-
ministic. However, few works have been done on the anti-
synchronization of a general MNN with uncertain terms
and stochastic perturbations [21–23], which takes full use
of them to strengthen the security and secrecy.

Motivated by the above discussion, in this paper, we
consider the exponential anti-synchronization problem for
a general stochastic MNN with non-modeled dynamics
by using a novel adaptive control approach. The contri-
butions of our paper are as follows. (i) The considered
MNNs include the effects from external noise and non-
modeled dynamics; (ii) the non-modeled dynamics which
are bounded need not satisfy other constrained conditions;
(iii) the exponential anti-synchronization analysis for a
general MNN which demonstrates plentiful characteristics
can be extended to other specific network forms. There-
fore, our goal is to do our best to shorten the gap to quickly
complete convergence for anti-synchronization problem of
memristive neural networks with non-modeled dynamics
and stochastic perturbations.

The rest of this paper is organized as follows. In Sec-
tion 2, the model description of the MNN is given. In Sec-
tion 3, a stochastic MNN with non-modeled dynamics is
introduced, and some preliminaries about sufficient condi-
tions are given to ensure synchronization of the memristor-
based neural network. In Section 4, an effective adaptive
controller and the proposed adaptive law are given to
ensure that the MNN can achieve the exponential anti-
synchronization in the mean square sense. In Section 5, a
numerical example is provided to illustrate the effective-
ness of our proposed results. Finally, this paper ends with
conclusions in Section 6.

2 Model description

In order to understand the MNN well, we describe the
circuit of a general class of neural networks in Figure 1 as
follows. Taking the ith subsystem as the form of analysis,
and the KCL equation [10] is written as:

ẋi(t) = − 1
Ci

⎡
⎣

n∑
j=1

(
1
Rij

+
1
Fij

)
× sgnij +

1
Ri

⎤
⎦xi(t)

+
1
Ci

n∑
j=1

fj(xj(t))
Rij

× sgnij

+
1
Ci

n∑
j=1

gj(xj(t− τ))
Fij

× sgnij +
Ii
Ci

t ≥ 0, i = 1, 2, . . . , N, (1)

where xi(t) is the voltage of the capacitor Ci, Rij de-
note the resistor between the feedback function fi(xi(t))
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Fig. 1. Circuit of neural network, where xi(·) is the state of
the ith subsystem, fj(·), gj(·) are the amplifiers, Rij(·) is the
connection resistor between the amplifier fj(·) and state xi(·)
and Fij(·) is the connection resistor between the amplifier gj(·)
and state xi(·), Ri and Ci are the resistor and capacitor, Ii is
the external input, ai, bi are the outputs.

and xi(t), and Fij denote the resistor between the feedback
function gi(xi(t−τ)) and xi(t). τ corresponds to the trans-
mission delay and it can be considered as a constant or a
time-varying function, Ri represents the parallel-resistor
corresponding to the capacitor Ci; Ii is the external input
or bias, and

sgnij =
{

1, i �= j,
−1, i = j.

In this paper, Ii is selected as null matrix, and therefore
it is omitted in the following models.

From equation (1), which can be written as:

ẋi(t) = −σixi(t) +
n∑

j=1

aijfj(xj(t))

+
n∑

j=1

bijgj(xj(t− τ)),

t ≥ 0, i = 1, 2, . . . , N, (2)
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Fig. 2. Typical current-voltage (i-v) characteristics of a mem-
ristor, the pinched hysteresis loop is due to the nonlinear
relationship between the memristance current and voltage.

where

σi =
1
Ci

⎡
⎣

n∑
j=1

(
1
Rij

+
1
Fij

)
× sgnij +

1
Ri

⎤
⎦ ,

aij =
sgnij

CiRij
, bij =

sgnij

CiFij
.

For the model of memristor-based neural networks, the
memductances of the memristors Wij , Mij and Pi, re-
spectively take place of the resistors Rij , Fij and Ri of a
general class of neural networks (1). With the pinched hys-
teresis loop in the current-voltage characteristic of mem-
ristors in Figure 2, we give a general type of MNN as
follows:

ẋi(t) = −σi(xi(t))xi(t) +
n∑

j=1

aij(xi(t))fj(xj(t))

+
n∑

j=1

bij(xi(t))gj(xj(t− τ)),

t ≥ 0, i = 1, 2, . . . , N, (3)

where

σi(xi(t)) =
1
Ci

⎡
⎣

n∑
j=1

(Wij +Mij) × sgnij +
1
Ri

⎤
⎦ ,

aij(xi(t)) =
Wij

Ci
× sgnij , bij(xi(t)) =

Mij

Ci
× sgnij .

Then

σi(xi(t)) =
{
σ̂i, |xi| < Ti,
σ̌i, |xi| > Ti,

aij(xi(t)) =
{
âij , |xi| < Ti,
ǎij , |xi| > Ti,

bij(xi(t)) =
{
b̂ij , |xi| < Ti,
b̌ij , |xi| > Ti,

where the switching jumps Ti > 0, σ̂i > 0, σ̌i > 0, âij , ǎij ,
b̂ij , b̌ij , i, j = 1, 2, . . . , n, are all constants.

Or, equivalently given in matrix format

ẋ(t) = −σ(x(t))x(t) +A(x(t))f(x(t))
+B(x(t))g(x(t − τ)),

t ≥ 0, i = 1, 2, . . . , N, (4)

where σ(x(t)) = diag(σ1(x(t)), σ2(x(t)), . . . , σn(x(t))),
A(x(t)) = [aij(xi(t))]n×n, B(x(t)) = [bij(xi(t))]n×n.

Remark 1. Memristor behavior is more and more
shown its plentiful performance as new technology pro-
cess nodes to be introduced because of this feature of
pinched hysteresis, where it constructed memristive neural
network consisting of three electronic neurons connected
by two memristor emulator synapses that demonstrated
experimentally the formation of associative memory. Ac-
cording to the analysis above, it is easy to see that the
memristor-based neural network (3) is a state-dependent
switching system, and it is not the same as the general
class of neural network.

Remark 2. The network (4) which demonstrates
plentiful characteristics represents a general class of
memristor-based neural networks with constant or time-
varying delays. When σ(x(t)), A(x(t)), B(x(t)) are all con-
stants, network (4) becomes a general recurrent neural
network [24]; when σ(x(t)) is constant, network (4) be-
comes a memristor-based recurrent neural network [2];
when B(x(t)) ≡ 0, network (4) becomes a memristor-
based Hopfield network [25]. Besides that, when f is
a sigmoid function and g ≡ 0, network (4) is a class
memristor-based Hopfield neural network. Similarly, when
f = (|x + 1| − |x − 1|)/2 and g ≡ 0 or g ≡ f , neu-
ral network (4) represents memristor-based cellular neural
networks [26].

3 Preliminaries and problem formulation

As a matter of convenience, some preliminaries and nota-
tions are given as follows.

In this paper, solutions of all the systems consid-
ered in the following are intended in the Filippov’s sense.
In the Banach space C([−τ, 0], Rn), we define ‖V ‖c =
[
∑n

i=1(sup−τ≤s≤0 |Vi(s)|)2]1/2. For a vector v ∈ Rn, whose
norm is denoted by ‖v‖∞ = max1≤i≤n{|vi|}, and ‖ · ‖
denotes the Euclidean norm of the vector v. Let σi =
max{σ̂i, σ̌i}, σi = min{σ̂i, σ̌i}, aij = max{âij , ǎij}, aij =
min{âij , ǎij}, bij = max{b̂ij, b̌ij}, bij = min{b̂ij , b̌ij}.
co{ζ

i
, ζi} denotes the closure of the convex hull gener-

ated by real numbers ζ
i
and ζi or real matrices ζ

i
and ζi.

Furthermore, [·, ·] represents an interval, and we define
[ζ

i
, ζi] = co{ζ

i
, ζi}.

Definition 1 (see Ref. [27]). Suppose E ⊆ Rn, then
x→ F (x) is called a set-valued map from E → Rn, if for
each point x ∈ E, there exists a nonempty set F (x) ⊆ Rn.
A set-valued map F with nonempty values is said to be
upper semi-continuous at x0 ∈ E, if for any open set N

http://www.epj.org


Page 4 of 10 Eur. Phys. J. B (2015) 88: 109

containing F (x0), there exists a neighborhood M of x0

such that F (M) ⊆ N . The map F (x) is said to be have a
closed (convex, compact) image if for each x ∈ E, F (x) is
a closed (convex, compact).

Definition 2 (see Ref. [28]). For the system ẋ(t) =
f(x), x ∈ Rn, with discontinuous right-hand sides, a set-
valued map is defined as

F (t, x) =
⋂
ε>0

⋂
μ(N)=0

co[f(B(x, ε))\N ],

where co[E] is the closure of the convex hull of set E,
B(x, ε) = {y : ‖y − x‖ ≤ ε} and μ(N) is Lebesgue mea-
sure of set N . A solution in Filippov’s sense of Cauchy
problem for this system with initial condition x(0) = x0

is an absolutely continuous function x(t), which satisfies
x(0) = x0 and differential inclusion ẋ(t) ∈ F (t, x).

In order to establish our main results, some necessary
Assumptions and Lemmas are given in the following.

Assumption 1. The neuron activation functions f(·)
and g(·) which are continuous with f(0) = g(0) = 0 are
bounded, and there exist positive scalars l1 and l2 for
all x, y satisfying

‖f(x) − f(y)‖ = l1‖x− y‖, ‖g(x) − g(y)‖ = l2‖x− y‖.
Assumption 2. For i, j = 1, 2, . . . , n,

co{âi, ǎi}xi(t) + co{âi, ǎi}yi(t) ⊆ co{âi, ǎi}ei(t),
co{âi, ǎi}fj(xi(t)) + co{âi, ǎi}fj(yi(t))

⊆ co{âi, ǎi}(fj(xi(t)) + fj(yi(t))),
co{âi, ǎi}gj(xi(t− τ)) + co{âi, ǎi}gj(yi(t− τ))

⊆ co{âi, ǎi}(gj(xi(t− τ)) + gj(yi(t− τ))).

Assumption 3. Assume that the non-modeled dy-
namics are bounded and for all t > 0 there exist some
positive constants h > 0 such that

‖ 
 h(t)‖∞ ≤ h.

Assumption 4. The noise matrix φ(·) is local
Lipschitz continuous and satisfies the linear growth con-
dition as well, where φ(t, 0, 0) = 0. Moreover, there exist
two real positive matrixes R1, R2 for all x, y such that

trace
[
φT (t, e)φ(t, e)

] ≤ xTR1x+ yTR2y.

Lemma 1 Gronwall’s inequality (see Ref. [29]). Let
T > 0 and u(·) be a Borel measurable bounded nonnega-
tive function on [0, T ]. If

u(t) ≤ c+ v

∫ t

0

u(s)ds, ∀0 ≤ t ≤ T,

for some constants u, v, then

u(t) ≤ c exp(vt), ∀0 ≤ t ≤ T.

Lemma 2. Assume that the stochastic differential
equation is

d(x) = f(x(t), x(t − τ), t)dt+ g(x(t), x(t − τ), t)dυ(t),

then an operator L V (x(t), t) from R+ × Rn along the
trajectory of the error system is defined as

L V (x(t), t) = Vt(x(t), t) + Vx(x(t), t)f(x(t), x(t − τ), t)

+
1
2
trace

{
gT (x(t), x(t − τ), t)

× Vxxg(x(t), x(t − τ), t)
}
,

where

Vt(x(t), t) =
∂V (x(t), t)

∂t
,

Vx(x(t), t) =
(
∂V (x(t), t)

∂x1
,
∂V (x(t), t)

∂x2
, . . . ,

∂V (x(t), t)
∂xn

)
,

Vxx =
(
∂2V (x(t), t)
∂xi∂xj

)

n×n

.

Lemma 3 (see Ref. [30]). If X and Y are real matrices
with appropriate dimensions, then there exists a θ > 0,
such that

XTY + Y TX ≤ θXTX +
1
θ
Y TY.

According to systems (3) and (4), and using the theory of
differential inclusions, we have

ẋi(t) ∈ −[σi, σi]xi(t) +
n∑

j=1

[aij , aij ]fj(xj(t))

+
n∑

j=1

[
bij , bij

]
gj(xj(t− τ)),

t ≥ 0, i = 1, 2, . . . , N. (5)

The vector form is given by

ẋ(t) ∈ −[Σ,Σ]x(t) + [A,A]f(x(t)) + [B,B]g(x(t− τ)),
t ≥ 0, (6)

where x(t) = (x1(t), x2(t), . . . , xn(t))T , Σ = diag{σ1, σ2,
. . . , σn}, Σ = diag{σ1, σ2, . . . , σn}, A = (aij)n×n, A =
(aij)n×n, B = (bij)n×n, B = (bij)n×n.

Applying the theories of set-valued maps and differen-
tial inclusions, system (6) is equivalent to:

ẋ(t) = −Σ(t)x(t) +A(t)f(x(t)) +B(t)g(x(t− τ)), (7)

where t ≥ 0, Σ(t) ∈ [Σ,Σ], A(t) ∈ [A,A], B(t) ∈ [B,B].
On the basis of the discussion above, for the drive sys-

tems (6) and (7) we can construct a general MNN as the
response system which can be written as follows:

ẏ(t) ∈ − [
Σ,Σ

]
x(t) +

[
A,A

]
f(y(t))

+
[
B,B

]
g(y(t− τ)), (8)

or, there exists Σ(t) ∈ [Σ,Σ], A(t) ∈ [A,A], and B(t) ∈
[B,B], such that

ẏ(t) = −Σ(t)y(t) +A(t)f(y(t)) +B(t)g(y(t− τ)), (9)

http://www.epj.org
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where the initial conditions are given by y(t) = ψ(t), t ∈
[−τ, 0], the initial condition ψ(t) ∈ Rn is a continuous
vector function.

Let e(t) = y(t) + x(t) be the anti-synchronization er-
ror. Since there exist non-modeled dynamics and environ-
mental noises in the real network system, model uncer-
tainty and stochastic perturbations should be considered
in the general neural networks models. Then according to
Assumption 2, we obtain the following error system

de(t) ∈ (−[Σ,Σ]e(t) + 
h(t)

+ [A,A]f(e(t)) + [B,B]g(e(t− τ)))dt
+ φ(t, e(t), e(t− τ))dω(t), (10)

or

de(t) =[−Σ(t)ei(t) +
h(t) +A(t)f(e(t))
+B(t)g(e(t− τ))]dt+φ(t, e(t), e(t − τ))dω(t), (11)

where e(t, ε) denotes the state trajectory from the initial
data e(θ) = ε(θ), on −τ ≤ θ ≤ 0 in C2

F ([−τ, 0];Rn).
Σ(t) ∈ [Σ,Σ], A(t) ∈ [A,A], B(t) ∈ [B,B]. 
h(t)
represents the non-modeled dynamics in the system
and f(e(t)) = f(y(t)) + f(x(t)), g(e(t)) = g(y(t)) +
g(x(t)). φ(t, e(t), e(t − τ)) is noise intensity. w(t) is a
m-dimensional Brownian motion defined on the proba-
bility space (Ω,F , P ) with E{ω(t)} = 0, E{ω2(t)} =
1, E{ω(s)ω(t)} = 0, s �= t, and φ(t, e(t), e(t − τ)) ∈ Rn

is the noise intensity satisfying the Assumption 4.
Definition 3. The error function e(t) with non-

modeled dynamics and stochastic perturbations can be
exponentially converge to zero in mean square sense if
there exist constants β > 0 and α > 0, such that
E‖e(t)‖2 ≤ α exp(−βt) and t > 0, where β is called the
decay rate of convergence. System (11) are said to be ex-
ponentially anti-synchronization in mean square sense.

4 Main results

In this section, the adaptive exponential anti-synchroniz-
ation criteria is given for a general memristive neural net-
works. Two corollaries are also derived for memristive neu-
ral networks. The adaptive controller is designed as

⎧
⎨
⎩
u(t) = −k1(t)e(t) − k2(t) · sign(e(t)),
k̇1(t) = γeT (t)Pe(t),
k̇2(t) = υ‖Pe(t)‖,

(12)

where

sign(e(t)) =

⎧⎪⎨
⎪⎩

−1, e(t) < 0,

0, e(t) = 0,

1, e(t) > 0.

Theorem 1. Under the Assumptions 1−4, the sys-
tem (11) with non-modeled dynamics and stochastic per-
turbations will be converged under the controller u(t). If
there exist two n×n symmetric matrices P > 0 andQ > 0,

and four positive constants ρ, θ1, θ2 and δ satisfying some
certain conditions, systems (11) can achieve exponentially
anti-synchronization in the mean square sense. And such
that the following conditions hold:

(i)P ≤ ρI;
(ii) k2 ≥ h;

(iii)

⎡
⎣
Φ PĀ PB̄
� − 1

2θ1
I 0

� � − 1
2θ2
I

⎤
⎦ ≤ 0.

1
θ2
l22 −Q+ ρR2 ≤ 0,

where

Φ = −PΣ −ΣTP +Q+
1
θ1
l21 + 2k1P + ρR1 + δI.

For the proof of Theorem 1, please see the Appendix for
details.

Furthermore, the analysis and expansion of the
Theorem 1, then we have the following results.

Corollary 1. If B(t) ≡ 0 or g(x) ≡ 0. The memristor-
based neural network (4) becomes the memristor-based
Hopfield neural network, and if Assumptions 1−4 hold, the
error system of the stochastic memristor-based Hopfield
neural network with non-modeled dynamics will be con-
vergent. If there exist two n×n symmetric matrices P > 0
and Q > 0, and three positive constants ρ, θ1, and δ
which satisfy some certain conditions, system (11) under
the controller u(t) (12) can achieve exponentially anti-
synchronization in the mean square sense. Therefore, the
following conditions hold:

(i)P ≤ ρI;
(ii) k2 > h;

(iii)
[
Φ PĀ
� − 1

2θ1
I

]
≤ 0.

−Q+ ρR2 ≤ 0,

where

Φ = −PΣ −ΣTP +Q+
1
θ1
l21 + 2k1P + ρR1 + δI.

Corollary 2. Let Assumptions 1−4 hold. If there exist
two n × n symmetric matrices P > 0 and Q > 0, and
four positive constants ρ, θ1, θ2 and δ which satisfy some
certain conditions, such that the following conditions hold:

(i)P ≤ ρI;

(ii)

⎡
⎣
Φ PĀ PB̄
� − 1

2θ1
I 0

� � − 1
2θ2
I

⎤
⎦ ≤ 0.

1
θ2
l22 −Q+ ρR2 ≤ 0,

where

Φ = −PΣ −ΣTP +Q+
1
θ1
l21 + 2k1P + ρR1 + δI.
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Then system (11) with 
h(t) = 0 can obtain exponen-
tially anti-synchronization in the mean square sense under
the action of the following adaptive controller{

u(t) = −k1(t)e(t),

k̇1(t) = γeT (t)Pe(t).
(13)

5 Numerical simulations

In this section, we give some numerical simulations to ver-
ify our analysis by using the MATLAB simulink toolbox.

Example 1. We consider the following two-
dimensional memristive neural networks without non-
modeled dynamic and stochastic perturbations as drive
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −σ1(x1(t))x1(t) + a11(x1(t))f(x1(t))

+a12(x1(t))f(x2(t)) + b11(x1(t))

×g(x1(t− τ)) + b12(x1(t))g(x2(t− τ)),

ẋ2(t) = −σ2(x2(t))x2(t) + a21(x2(t))f(x1(t))

+a22(x2(t))f(x2(t)) + b21(x2(t))

×g(x1(t− τ)) + b22(x2(t))g(x2(t− τ)),

(14)

where τ = 1, the initial conditions are x(s) = (0.1, 0.1)T ,
s ∈ [−1, 0], f(ϑ) = g(ϑ) = tanh(ϑ). From Assumption 1,
we can select l1 = l2 = diag(1, 1), and the rest parameter
matrices are given as follows:

σ1(x1(t)) =

{
1, |x1(t)| < 1,

1.2, |x1(t)| > 1,

σ2(x2(t)) =

{
1.2, |x1(t)| < 1,

1, |x1(t)| > 1,

a11(x1(t)) =

{
2, |x1(t)| < 1,

1.8, |x1(t)| > 1,

a12(x1(t)) =

{−0.1, |x1(t)| < 1,

−0.08, |x1(t)| > 1,

a21(x2(t)) =

{−4.8, |x2(t)| < 1,

−5, |x2(t)| > 1,

a22(x2(t)) =

{
2.8, |x2(t)| < 1,

3, |x2(t)| > 1,

b11(x1(t)) =

{−1.5, |x1(t)| < 1,

−1.3, |x1(t)| > 1,

b12(x1(t)) =

{−0.1, |x1(t)| < 1,

−0.05, |x1(t)| > 1,

b21(x2(t)) =

{−0.15, |x2(t)| < 1,

−0.2, |x2(t)| > 1,

b22(x2(t)) =

{−2.3, |x2(t)| < 1,

−2.5, |x2(t)| > 1.

Then the corresponding two-dimensional memristive neu-
ral network with non-modeled dynamic and stochastic
perturbations under the controller u(t) is given as response
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1(t) = −σ1(y1(t))y1(t) + 
h1(t) + a11(y1(t))

×f(y1(t)) + a12(y1(t))f(y2(t)) + b11(y1(t))

×g(y1(t− τ)) + b12(y1(t))g(e2(t− τ))

+u1(t) + φ1(t, e1(t), e1(t− τ))ω̇1(t),

ẏ2(t) = −σ2(y2(t))y2(t) + 
h2(t) + a21(y2(t))

×f(y1(t)) + a22(y2(t))f(y2(t)) + y21(y2(t))

×g(y1(t− τ)) + b22(y2(t))g(y2(t− τ))

+u2(t) + φ2(t, e2(t), e2(t− τ))ω̇2(t),
(15)

where the initial conditions are y(s) = (0.2,−0.2)T , s ∈
[−τ, 0]. 
h1(t) = 
h2(t) = 0.01 × sin(t), and the noise
intensity are given as follows:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ1(t, e1(t), e1(t− τ)) =
√

0.005e1(t)

+
√

0.25e1(t− τ),

φ2(t, e2(t), e2(t− τ)) =
√

0.025e2(t)

+
√

0.005e2(t− τ).

ω(t) = (ω1(t), ω2(t))T is a 2-dimensional Brownian mo-
tion satisfying E{dω(t)} = 0 and E{[dω(t)]2} = dt. From
Assumption 3, it is easy to get R1 = diag(0.01, 0.05),
R2 = diag(0.5, 0.01). The remaining parameters of equa-
tion (15) are the same as equation (14). The state tra-
jectory of response system with uncertainty terms can
deviate from an ideal world.

Therefore, the error system e(t) = x(t) + y(t) without
the controller u(t) is described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1(t) = −σ1(e1(t))e1(t) + 
h1(t) + a11(e1(t))

×f(e1(t)) + a12(e1(t))f(e2(t)) + b11(e1(t))

×g(e1(t− τ)) + b12(e1(t))g(e2(t− τ))

+φ1(t, e1(t), e1(t− τ))ω̇1(t),

ė2(t) = −σ2(e2(t))e2(t) + 
h2(t) + a21(e2(t))

×f(e1(t)) + a22(e2(t))f(e2(t)) + e21(e2(t))

×g(e1(t− τ)) + b22(e2(t))g(e2(t− τ))

+φ2(t, e2(t), e2(t− τ))ω̇2(t),
(16)

http://www.epj.org


Eur. Phys. J. B (2015) 88: 109 Page 7 of 10

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−2

0

2

x
1
(t)

x 2(t
)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−5

0

5

y
1
(t)

y 2(t
)

(d)

Fig. 3. (a, b) Time response curves of state variables, (c) the system error curves with non-model dynamical and stochastic
perturbation, and (d) the phase curves of systems (14) and (15) without the adaptive controller u(t).

Then, the system (16) with the controller u(t) can be
written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1(t) = −σ1(e1(t))e1(t) + 
h1(t) + a11(e1(t))

×f(e1(t)) + a12(e1(t))f(e2(t)) + b11(e1(t))

×g(e1(t− τ)) + b12(e1(t))g(e2(t− τ))

+u1(t) + φ1(t, e1(t), e1(t− τ))ω̇1(t),

ė2(t) = −σ2(e2(t))e2(t) + 
h2(t) + a21(e2(t))

×f(e1(t)) + a22(e2(t))f(e2(t)) + e21(e2(t))

×g(e1(t− τ)) + b22(e2(t))g(e2(t− τ))

+u2(t) + φ2(t, e2(t), e2(t− τ))ω̇2(t).
(17)

Using the adaptive controller u(t) for the response sys-
tem and the drive-response concept, the error system (17)
quickly converge to zero and state trajectories of the
response system anti-synchronized the drive system.

We choose

k1 = k2 = 0.01, υ = γ = 1

and

Σ = min(Σ̂, Σ̌), Ā = max(Â, Ǎ), B̄ = max(B̂, B̌).

By using the MATLAB LMI toolbox, we obtain the fol-
lowing feasible solutions by Theorem 1:

P =

⎛
⎝

0.2364 0.0470

0.0470 0.0570

⎞
⎠ ,

Q =

⎛
⎝

2.4208 0.0154

0.0154 2.0029

⎞
⎠ ,

ρ = 1.1133, θ1 = 0.4313,

θ2 = 0.8450, δ = 5.5094.

Thus, we can calculate the decay rate as

β = δ/λmin(P ) = 121.3642.

When k1(0) = 0.1 and k2(0) = 0.2, Figure 3 depicts the
time responses of the state variables, the phase curves
of systems (14) and (15), and the synchronization er-
ror (17) without the robust adaptive controller u(t) de-
signed in (12). Figure 4 shows the time response of the
state variables, the phase curves of systems (14) and (15),
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Fig. 4. (a, b) Time response curves of state variables, (c) the system error curves with non-model dynamical and stochastic
perturbation, and (d) the phase curves of systems (14) and (15) with the adaptive controller u(t).

and the synchronization errors (17) with the adaptive
controller u(t) designed in (12), where we can see that
the drive system (14) and the response system (15) with
the adaptive controller indeed become exponentially anti-
synchronized in the mean square sense the synchronization
error can also quickly converge to zero.

6 Conclusion

An adaptive controller which is constructed based on
the differential inclusions theory, linear matrix inequali-
ties, Gronwall’s inequality, and adaptive control technique
achieve the adaptive anti-synchronization of stochas-
tic memristor-based neural network with non-modeled
dynamics in this paper.

Two parts of the controller are designed that one is to
facilitate the system itself synchronizing with the target
drive system and the other is to eliminate the influence of
the response system’s uncertainties. In addition, by using
LMIs approach and the Lyapunov functional method, the
sufficient conditions for synchronization are obtained. A
numerical example has shown that our method is effective.
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tions, which are helpful to improve the quality of this paper.

The work is supported by the National Natural Science
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No. YETP0449), and the Beijing Natural Science Foundation
(Grant No. 4142016).
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Appendix

Proof of theorem 1. The system (11) under the con-
troller u(t) can be written as:

de(t) = [−Σ(t)e(t) + 
h(t) +A(t)f(e(t))

+B(t)g(e(t− τ)) + u(t)]dt

+ φ(t, e(t), e(t− τ))dω(t). (A.1)

Consider the controlled system (A.1) with controller (12),
we construct a Lyapunov functional in the form of

V (t) = eT (t)Pe(t) +
∫ t

t−τ

eT (s)Qe(s)ds

+
1
γ

(k1(t) − k1)2 +
1
μ

(k2(t) − k2)2. (A.2)
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Moreover, from Lemma 2, we obtain the operator

L V (t) = 2eT (t)P [−Σ(t)e(t) + 
h(t) +A(t)f(e(t))

+B(t)g(e(t− τ)) + u(t)]

+ trace[φT (t, e(t), e(t− τ))

× Pφ(t, e(t), e(t− τ))] + eT (t)Qe(t)

− eT (t− τ)Qe(t− τ) +
2
γ

(k1(t) − k1)k̇1(t)

+
2
μ

(k2(t) − k2)k̇2(t),

= eT (t)[−PΣ(t)−ΣT (t)P+Q]e(t)+2eT (t)P
h(t)

+ 2eT (t)PAtf(e(t)) + 2eT (t)PBtg(e(t− τ))

+ 2eT (t)Pu(t) + trace[φT (t, e(t), e(t− τ))

× Pφ(t, e(t), e(t− τ))] − eT (t− τ)Qe(t− τ)

+
2
γ

(k1(t) − k1)k̇1(t) +
2
μ

(k2(t) − k2)k̇2(t).

It is clear from Lemma 3 that

2eT (t)PAtf(e(t)) ≤ θ1e
T (t)PĀĀTPe(t)

+
1
θ1
fT (e(t))f(e(t))

≤ θ1e
T (t)PĀĀTPe(t)

+
1
θ1
eT (t)l21e(t),

2eT (t)PBtg(e(t− τ)) ≤ θ2e
T (t)PB̄B̄TPe(t)

+
1
θ2
gT (e(t− τ))g(e(t− τ))

≤ θ2e
T (t)PB̄B̄TPe(t)

+
1
θ2
eT (t− τ)l22e(t− τ).

From Assumptions 2 and 3, we have

2eT (t)P 
 h(t) ≤ 2‖eT (t)P‖ · ‖ 
 h(t)‖∞ ≤ 2h‖Pe(t)‖,

and

trace[φT (t, e(t), e(t− τ))Pφ(t, e(t), e(t − τ)]

≤ λmax(P )trace[φT (t, e(t), e(t− τ))φ(t, e(t), e(t − τ))]

≤ ρ(eT (t)R1e(t) + eT (t− τ)R2e(t− τ)).

Then we obtain

L V (t) ≤ eT (t)
[
− PΣ −ΣTP +Q+ θ1PĀĀ

TP

+
1
θ1
l21 + θ2PB̄B̄

TP + 2k1P + ρR1

]
e(t)

+ eT (t− τ)
[

1
θ2
l22 −Q+ ρR2

]
e(t− τ)

+ 2(h− k2)‖Pe(t)‖
≤ eT (t)Φ1e(t) + eT (t− τ)Φ2e(t− τ)

− δeT (t)e(t), (A.3)

where

Φ1 = −PΣ −ΣTP +Q+ θ1PĀĀ
TP +

1
θ1
l21

+ θ2PB̄B̄
TP + 2k1P + ρR1 + δI,

Φ2 =
1
θ2
l22 −Q+ ρR2.

Considering the condition of Theorem 1 and the Schur
complement, we get

L V (t) ≤ −δeT (t)e(t).

It follows from Itôs formula that

EV (t) − EV (0) =
∫ t

0

EL V ≤ −δ
∫ t

0

E(e(s)e(s))ds,

(A.4)

which means that

λmin(P )E‖e(t)‖2 ≤ EV (t) ≤ EV (0) − δ

∫ t

0

E‖e(s)‖2ds.

By using Lemma 1, we have

E‖e(t)‖2 ≤ α exp(−βt),
where α = EV (0)/λmin(P ), β = δ/λmin(P ). On the other
hand, we denote

EV (0) = EeT (0)e(0) +
∫ 0

−τ

EeT (s)e(s)ds

+
1
γ

(k1(0) − k1)2 +
1
μ

(k2(0) − k2)2

≤ λmax(P )E sup
−τ≤θ≤0

‖ε(θ)‖2

+ τλmax(Q)E sup
−τ≤θ≤0

‖ε(θ)‖2

+
1
γ

(k1(0) − k1)2 +
1
μ

(k2(0) − k2)2. (A.5)

Through the above calculation, we finally obtain

E‖e(t)‖2 ≤ α exp(−βt),
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where

α = [λmax(P ) + τλmax(Q)E sup
−τ≤θ≤0

‖ε(θ)‖2

+
1
γ

(k1(0) − k1)2 +
1
μ

(k2(0) − k2)2] × (λmin(P ))−1.

Therefore, by Definition 1 we see that systems (6) and (8)
can be exponentially synchronized in the mean square
sense with a decay rate β. The proof of Theorem 1 is
completed.
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